Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Viruses ; 15(1)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2200882

ABSTRACT

COVID-19 severely affected nursing home residents from March 2020 onwards in Belgium. This study aimed to model the impact of vaccination and facility characteristics on cluster occurrence, duration and severity in this setting. Possible clusters were identified between June 2020 and January 2022, based on the Belgian COVID-19 surveillance in nursing homes. Median attack rates (AR) among residents and staff, case hospitalization rates (CHR) and case fatality rates (CFR) were calculated. A negative binomial model was used to identify the association between nursing home characteristics and the number of cases, hospital admissions and deaths and the duration of the cluster. A total of 2239 clusters were detected in more than 80% of nursing homes. Most of these (62%) occurred before the start of COVID-19 vaccination (end of December 2020). After vaccination, the number of clusters, the AR among residents and staff, the CHR and the CFR dropped. Previous cluster(s) and vaccination decreased the number of cases, hospital admissions and deaths among residents. Previous cluster experience and having started vaccination were protective factors. We recommend continued implementation of targeted interventions such as vaccination, large-scale screening and immediate implementation of additional infection prevention and control measures.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Belgium/epidemiology , COVID-19 Vaccines , Nursing Homes , Vaccination
2.
BMC Infect Dis ; 22(1): 839, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2119352

ABSTRACT

BACKGROUND: Differences in the genetic material of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may result in altered virulence characteristics. Assessing the disease severity caused by newly emerging variants is essential to estimate their impact on public health. However, causally inferring the intrinsic severity of infection with variants using observational data is a challenging process on which guidance is still limited. We describe potential limitations and biases that researchers are confronted with and evaluate different methodological approaches to study the severity of infection with SARS-CoV-2 variants. METHODS: We reviewed the literature to identify limitations and potential biases in methods used to study the severity of infection with a particular variant. The impact of different methodological choices is illustrated by using real-world data of Belgian hospitalized COVID-19 patients. RESULTS: We observed different ways of defining coronavirus disease 2019 (COVID-19) disease severity (e.g., admission to the hospital or intensive care unit versus the occurrence of severe complications or death) and exposure to a variant (e.g., linkage of the sequencing or genotyping result with the patient data through a unique identifier versus categorization of patients based on time periods). Different potential selection biases (e.g., overcontrol bias, endogenous selection bias, sample truncation bias) and factors fluctuating over time (e.g., medical expertise and therapeutic strategies, vaccination coverage and natural immunity, pressure on the healthcare system, affected population groups) according to the successive waves of COVID-19, dominated by different variants, were identified. Using data of Belgian hospitalized COVID-19 patients, we were able to document (i) the robustness of the analyses when using different variant exposure ascertainment methods, (ii) indications of the presence of selection bias and (iii) how important confounding variables are fluctuating over time. CONCLUSIONS: When estimating the unbiased marginal effect of SARS-CoV-2 variants on the severity of infection, different strategies can be used and different assumptions can be made, potentially leading to different conclusions. We propose four best practices to identify and reduce potential bias introduced by the study design, the data analysis approach, and the features of the underlying surveillance strategies and data infrastructure.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Belgium/epidemiology , Intensive Care Units
3.
Viruses ; 14(10)2022 10 20.
Article in English | MEDLINE | ID: covidwho-2081913

ABSTRACT

An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available.


Subject(s)
COVID-19 , Pandemics , Humans , Belgium/epidemiology , COVID-19/epidemiology , Genome, Viral , Genomics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing
4.
Viruses ; 14(9)2022 09 02.
Article in English | MEDLINE | ID: covidwho-2010310

ABSTRACT

Wastewater-based surveillance was conducted by the national public health authority to monitor SARS-CoV-2 circulation in the Belgian population. Over 5 million inhabitants representing 45% of the Belgian population were monitored throughout 42 wastewater treatment plants for 15 months comprising three major virus waves. During the entire period, a high correlation was observed between the daily new COVID-19 cases and the SARS-CoV-2 concentration in wastewater corrected for rain impact and covered population size. Three alerting indicators were included in the weekly epidemiological assessment: High Circulation, Fast Increase, and Increasing Trend. These indicators were computed on normalized concentrations per individual treatment plant to allow for a comparison with a reference period as well as between analyses performed by distinct laboratories. When the indicators were not corrected for rain impact, rainy events caused an underestimation of the indicators. Despite this negative impact, the indicators permitted us to effectively monitor the evolution of the fourth virus wave and were considered complementary and valuable information to conventional epidemiological indicators in the weekly wastewater reports communicated to the National Risk Assessment Group.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/epidemiology , Humans , Public Health , RNA, Viral , Wastewater
5.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1911633

ABSTRACT

This retrospective multi-center matched cohort study assessed the risk for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality in hospitalized patients when infected with the Omicron variant compared to when infected with the Delta variant. The study is based on a causal framework using individually-linked data from national COVID-19 registries. The study population consisted of 954 COVID-19 patients (of which, 445 were infected with Omicron) above 18 years old admitted to a Belgian hospital during the autumn and winter season 2021-2022, and with available viral genomic data. Patients were matched based on the hospital, whereas other possible confounders (demographics, comorbidities, vaccination status, socio-economic status, and ICU occupancy) were adjusted for by using a multivariable logistic regression analysis. The estimated standardized risk for severe COVID-19 and ICU admission in hospitalized patients was significantly lower (RR = 0.63; 95% CI (0.30; 0.97) and RR = 0.56; 95% CI (0.14; 0.99), respectively) when infected with the Omicron variant, whereas in-hospital mortality was not significantly different according to the SARS-CoV-2 variant (RR = 0.78, 95% CI (0.28-1.29)). This study demonstrates the added value of integrated genomic and clinical surveillance to recognize the multifactorial nature of COVID-19 pathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Belgium/epidemiology , COVID-19/epidemiology , Cohort Studies , Humans , Retrospective Studies , SARS-CoV-2/genetics , Seasons
6.
Arch Public Health ; 80(1): 118, 2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1789143

ABSTRACT

BACKGROUND: Contact tracing is one of the main public health tools in the control of coronavirus disease 2019 (COVID-19). A centralized contact tracing system was developed in Belgium in 2020. We aim to evaluate the performance and describe the results, between January 01, 2021, and September 30, 2021. The characteristics of COVID-19 cases and the impact of COVID-19 vaccination on testing and tracing are also described. METHODS: We combined laboratory diagnostic test data (molecular and antigen test), vaccination data, and contact tracing data. A descriptive analysis was done to evaluate the performance of contact tracing and describe insights into the epidemiology of COVID-19 by contact tracing. RESULTS: Between January and September 2021, 555.181 COVID-19 cases were reported to the central contact center and 91% were contacted. The average delay between symptom onset and contact tracing initiation was around 5 days, of which 4 days corresponded to pre-testing delay. High-Risk Contacts (HRC) were reported by 49% of the contacted index cases. The mean number of reported HRC was 2.7. In total, 666.869 HRC were reported of which 91% were successfully contacted and 89% of these were tested at least once following the interview. The estimated average secondary attack rate (SAR) among the contacts of the COVID-19 cases who reported at least one contact, was 27% and was significantly higher among household HRC. The proportion of COVID-19 cases who were previously identified as HRC within the central system was 24%. CONCLUSIONS: The contact-tracing system contacted more than 90% of the reported COVID-19 cases and their HRC. This proportion remained stable between January 1 2021 and September 30 2021 despite an increase in cases in March-April 2021. We report high SAR, indicating that through contact tracing a large number of infections were prospectively detected. The system can be further improved by (1) reducing the delay between onset of illness and medical consultation (2) having more exhaustive reporting of HRC by the COVID-19 case.

7.
Archives of Public Health ; 80, 2022.
Article in English | EuropePMC | ID: covidwho-1787387

ABSTRACT

Background Contact tracing is one of the main public health tools in the control of coronavirus disease 2019 (COVID-19). A centralized contact tracing system was developed in Belgium in 2020. We aim to evaluate the performance and describe the results, between January 01, 2021, and September 30, 2021. The characteristics of COVID-19 cases and the impact of COVID-19 vaccination on testing and tracing are also described. Methods We combined laboratory diagnostic test data (molecular and antigen test), vaccination data, and contact tracing data. A descriptive analysis was done to evaluate the performance of contact tracing and describe insights into the epidemiology of COVID-19 by contact tracing. Results Between January and September 2021, 555.181 COVID-19 cases were reported to the central contact center and 91% were contacted. The average delay between symptom onset and contact tracing initiation was around 5 days, of which 4 days corresponded to pre-testing delay. High-Risk Contacts (HRC) were reported by 49% of the contacted index cases. The mean number of reported HRC was 2.7. In total, 666.869 HRC were reported of which 91% were successfully contacted and 89% of these were tested at least once following the interview. The estimated average secondary attack rate (SAR) among the contacts of the COVID-19 cases who reported at least one contact, was 27% and was significantly higher among household HRC. The proportion of COVID-19 cases who were previously identified as HRC within the central system was 24%. Conclusions The contact-tracing system contacted more than 90% of the reported COVID-19 cases and their HRC. This proportion remained stable between January 1 2021 and September 30 2021 despite an increase in cases in March–April 2021. We report high SAR, indicating that through contact tracing a large number of infections were prospectively detected. The system can be further improved by (1) reducing the delay between onset of illness and medical consultation (2) having more exhaustive reporting of HRC by the COVID-19 case. Supplementary Information The online version contains supplementary material available at 10.1186/s13690-022-00875-6.

8.
Int J Environ Res Public Health ; 18(23)2021 11 27.
Article in English | MEDLINE | ID: covidwho-1542532

ABSTRACT

Some occupational sectors, such as human health and care, food service, cultural and sport activities, have been associated with a higher risk of SARS-CoV-2 infection than other sectors. To curb the spread of SARS-CoV-2, it is preferable to apply targeted non-pharmaceutical interventions on selected economic sectors, rather than a full lockdown. However, the effect of these general and sector-specific interventions on the virus circulation has only been sparsely studied. We assess the COVID-19 incidence under different levels of non-pharmaceutical interventions per economic activity during the autumn 2020 wave in Belgium. The 14-day incidence of confirmed COVID-19 cases per the Statistical Classification of Economic Activities in the European Community (NACE-BEL) sector is modelled by a longitudinal Gaussian-Gaussian two-stage approach. This is based on exhaustive data on all employees in all sectors. In the presence of sanitary protocols and minimal non-pharmaceutical interventions, many sectors with close contact with others show considerably higher COVID-19 14-day incidences than other sectors. The effect of stricter non-pharmaceutical interventions in the general population and non-essential sectors is seen in the timing of the peak incidence and the width and height of the post-peak incidence. In most sectors incidences returned to higher levels after the peak than before and this decrease took longer for the health and care sector. Sanitary protocols for close proximity occupations may be sufficient during periods of low-level virus circulation, but progressively less with increasing circulation. Stricter general and sector-specific non-pharmaceutical interventions adequately decrease COVID-19 incidences, even in close proximity in essential sectors under solely sanitary protocols.


Subject(s)
COVID-19 , Belgium/epidemiology , Communicable Disease Control , Humans , Occupations , SARS-CoV-2
9.
Arch Public Health ; 79(1): 188, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1486599

ABSTRACT

BACKGROUND: With the spread of coronavirus disease 2019 (COVID-19), an existing national laboratory-based surveillance system was adapted to daily monitor the epidemiological situation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Belgium by following the number of confirmed SARS-CoV-2 infections, the number of performed tests and the positivity ratio. We present these main indicators of the surveillance over a one-year period as well as the impact of the performance of the laboratories, regarding speed of processing the samples and reporting results, for surveillance. METHODS: We describe the evolution of test capacity, testing strategy and the data collection methods during the first year of the epidemic in Belgium. RESULTS: Between the 1st of March 2020 and the 28th of February 2021, 9,487,470 tests and 773,078 COVID-19 laboratory confirmed cases were reported. Two epidemic waves occurred, with a peak in April and October 2020. The capacity and performance of the laboratories improved continuously during 2020 resulting in a high level performance. Since the end of November 2020 90 to 95% of the test results are reported at the latest the day after sampling was performed. CONCLUSIONS: Thanks to the effort of all laboratories a performant exhaustive national laboratory-based surveillance system to monitor the epidemiological situation of SARS-CoV-2 was set up in Belgium in 2020. On top of expanding the number of laboratories performing diagnostics and significantly increasing the test capacity in Belgium, turnaround times between sampling and testing as well as reporting were optimized over the first year of this pandemic.

10.
Arch Public Health ; 79(1): 185, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1484321

ABSTRACT

BACKGROUND: SARS-CoV-2 strains evolve continuously and accumulate mutations in their genomes over the course of the pandemic. The severity of a SARS-CoV-2 infection could partly depend on these viral genetic characteristics. Here, we present a general conceptual framework that allows to study the effect of SARS-CoV-2 variants on COVID-19 disease severity among hospitalized patients. METHODS: A causal model is defined and visualized using a Directed Acyclic Graph (DAG), in which assumptions on the relationship between (confounding) variables are made explicit. Various DAGs are presented to explore specific study design options and the risk for selection bias. Next, the data infrastructure specific to the COVID-19 surveillance in Belgium is described, along with its strengths and weaknesses for the study of clinical impact of variants. DISCUSSION: A well-established framework that provides a complete view on COVID-19 disease severity among hospitalized patients by combining information from different sources on host factors, viral factors, and healthcare-related factors, will enable to assess the clinical impact of emerging SARS-CoV-2 variants and answer questions that will be raised in the future. The framework shows the complexity related to causal research, the corresponding data requirements, and it underlines important limitations, such as unmeasured confounders or selection bias, inherent to repurposing existing routine COVID-19 data registries. TRIAL REGISTRATION: Each individual research project within the current conceptual framework will be prospectively registered in Open Science Framework (OSF identifier: https://doi.org/10.17605/OSF.IO/UEF29 ). OSF project created on 18 May 2021.

SELECTION OF CITATIONS
SEARCH DETAIL